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ABSTRACT

Characterstic equations are derived in generalized curvi-

linear coordinates. Linear elastic, isotropic, and homogeneous

constitutive equations have been used in the derivation. The

generalized characteristic equations readily lend themselves

to any requirements of space and dimension and geometry. A

simple boundary value problemis solved to indicate the

applicability of these equations.
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NOTATION

gmk contravariant components of the metric tensor

GL longitudinal wavespeed

GS shear wave'speed

nk unit vector normal to the wave front

t time

Vk particle velocity vector

xk generalized curvilinear coordinates

rm k Christofell symbol of the second kind£k

k. Kronecker delta

e Zpd covariant permutation tensor

A,> Lame's constants.

p density of the material

k
a 91 stress tensor

above a variable - time derivative

covariant differentiation
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I. INTRODUCTION

The method of characteristics, when applied in the solution

of wave propagation problems, involves first the determination of

the characteristic equations along the generated waves. The

derivation process of these equations is rather lengthy and tedious.

In the past, the process for a given boundary value problem was

specializedaccording to the relevant space dimension and the

prescribed geometry (Ziv, 1969) o

In this study it is proposed to present characteristic equations

in a generalized curvilinear tensor form. Once these generalized

characteristic equations are given, they readily lend themselves to

any specific boundary value problem regardless of space dimension

and geometry°

The derivation intended is a generalization ofthe method

proposed by Ziv (1969); namely, it is based on kinematical

relations across a surface of discontinuity0

The constitutive equations used are of the linear elastici

isotropic, and homogeneous type°

A simple boundary value problem is solved in order to

demonstrate the applicability of the generalized characteristic

equations to a given problem. This example consists of a uniform

oblique load suddenly applied on an infinite flat plate.
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II. GENERALIZED CHARACTERISTIC EQUATIONS

Characteristic equations are derived with respect to generalized

curvilinear coordinates. The analysis is based on the method given

by Ziv (1969). Dynamical field equations are presented first.

The linear equations of motion are

av

9
kg k p P at e (1)
Z;k a t °

The constitutive equations for linear, isotropic, and homo-

geneous elastic material are

at : k (V + g v
m
) + xVm 2)mk

(2)

The above equations represent first-order partial differential

equations of the hyperbolic type which govern the dynamical de-

formation in the medium.

To induce a characteristic surface for the dependent variables,

their total differentials are introduced as follows:

k 9VZ
V = V x;kx + (3)

ok

°k k m +
o a x + t (4)

Equations (1), (2), (3) and (4) are combined and become

° ak ' + k vF = k(5)[] 9,;k- + Px Zv~k7 = q~(5i, 91~ ~ ~~~~s
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mx :]a X;m7 +]( 7V + g mkDV;m[) + X2V;m m6 k= C 

(6)

where the symbol is introduced to imply that the first

partial derivatives are intederminate if Eqs. (5) and (6) are trans-

formed along thewave surfaces. It follows that to obtain the

characteristic equations, Eqs. (5) and (6) must be solved for the

indeterminate quantities included in 7 E . Physically, these

derivatives can be considered the derivatives on the rear of the

wave surface and are created as the wave surface is being formed

due to an excitation.

In view of this description, Hadamard's (1949) kinematical

relations across a surface of discontinuity are modified and

interpreted as follows:

Dve
LIn[-]n (7)V9; k -[an-] nk n ,;k

k

Ok2 . ;m LI 2. k ~~~~~~~~~~~(8)aCkzFm[ = [-- --n ]nm + G Z;m (8)

where the square brackets represent the discontinuity of the first

partial derivatives of continuous variables. The quantity included

in-these- squaretbracketsiis defined'.to beiial-to:i.its'.'vlue-ton he

rear of the wave surface minus its value on the front of this surface.

The derivatives on the front of the wave, which are the last terms of

the right-hand side of Eqs. (7) and (8), are known from prescribed

conditions. The n is the distance measured along the normal to the
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wave surface. The nk is the unit vector normal to the wave surface.

The discontinuity relations (7) and (8) are substituted in Eqs.

(5) and (6) to yield the following:

n k[ a] PG[ ] Rg (9)
nk [-n ] + pG[~)n =RR

Dk k a
k Dv ~~k k

G['-n ] + '(n [,a-1] + [n ["]) +

k D k
+ A n[w] = (10)

G = x n or x =Gn (11)

k k
R~= p(V~ - Gn V k) - a (12)

k =k - Gnmok k mk m vk )R =..* _Gn G -(V g - k.(13)2..i; m 9JV, V2 ;m) XV%.

Equations (9) and (10) are denoted as the dynamical conditions, since

it is from these relations that the wave surfaces and the characteristic

equations will be derived.

To obtain the characteristic equations, Eqs. (9) and (10) are

solved simultaneously for the discontinuous first partial derivatives

in the following way:

Equation (9) is multiplied by Gn , i.e.,

k
2. . 2,9 av2.

Gnkn [ n] pGn' [an -] = GnR (14)

Equation .'(10) is multiplied by n nk
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Do [ + k2. xav k 2. 2V
Gnkn- [--n-I + 1-(n [] + n [ '- + kn n n k [ ] n nkR+ X6~ nk n n -I nkn R2

This Equation can be written as follows:

£ k

Gnkn [kI -]- + (X + 2P)n [n = Rn nk

Simultaneous ,solution- of Eqs.f ;(14 r;an4';(15 gives',-.

(X + 2P - pG2) [n-]n = (Rnk - GR)n
= (R znk - GRz )n

avk
[-n- nn =

k 2
(R2 nk - GR) )n

X + 2P - pG2

Equation (9) is multiplied by GE pdnP as follows:

Qpd 2. 2 + v
GEpdnPnk [] + pG 2 . pdn

p [-*--] = GR2. Cpd

(16)

(17)

and Eq. (10) is multiplied by e£pdnpnk as follows:

G ZpdPn k ] + PE s pdnPnknk [a-]

+ pc dnn k
+ IIE pdn nnkpfn I p k av

+ ksp nmn n =kpd m. z k --]

k pl 
= RE k d nPn

The last equation becomes:

dk]
GE 2Ppd n 2.1n 

[v
+ IE 2 pdn

p
[3]

Q k p
Rkp nn92 9.pd k

Equations (17) and (18) will yield the following

(15)

or

(18)



- 6 -

k

(R~nk - GR~)£EPmnP k 9 9pm (19)

~k - pG

Eq. (10) is multiplied by nkn

2.
k

2v k 2

k~~~2 

Gnkn [a - -] + (x + 2p)n[-- (2)

and the same Eq. (10) is now multiplied by 6 k to give

k

n[G-~-] + (A6m + 2)n2 [a ] = Rk6k (21)

n~~~ ~~~~~~ Rk k (1

Simultaneous solution of Eqs. (20) and (21) gives

D)gk 6m + 21P) A+ 2 

[an ](kkm + 2p) nk n ) k_

_X (6k-m X *+ 2p n)R£ (22)
A+21' nkn) = -

Finally, Eq. (9) is multiplied by nkn

[-ak ]n + pG[-~-]nkn = R~nn (23)

and the same Eq. (9) is now multiplied by 6k to give

[-U--+ n[ ]+6 = R£ 6k (24)

Simultaneous solution of Eqs. (23) and (24) gives

= (nkn- 6 k )RQ
[an-](nkn -) pG (25)

Since it is necessary that the derivatives be discontinuous, the

denominators of Eqs. (16), (19), (22) and (25) are made to disappear.

This implies, in view of Eqs. (16), (19), (22) and (25) that

2 A + 2' 2 P
G = , G = - and G = 0, respectively. Furthermore, a

ncsaP P

necessary condition for finite solutions to exist is that the numerators
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of Eqs. (16), (19), (22) and (25) must vanish. Thus, the dot product

form of the left-hand side of Eq. (16) which is equal to 0- implies
0

that the vector V is parallel to vector n or that the material

particle at the wave front moves parallel to the propagating wave.

Therefore G = + 2 represents the squared celerity of
P

G2 X + 2plongitudinal-waves and will be denoted as G= = . Similarly,
L p

the cross product of the left-hand side of Eq. (19) implies that

2 pi
G = - represents the speed of shear waves andtherefore,is denoted

p
2 p

as G = . G = 0O represents an equilibrium condition. The resultsS P

of these operations are the desired generalized characteristic equations

which are presented below:

Z~ k., m k z2k m Zkn (n ok pGV) = (V nn -n -n PGVm) (26)
k ;k - n k;m

/

E p~~kJ ~ ~ k C~k - m k
d nn kQ - pC -n]I;GSV nkV; + G k - n nko ;m)} = O (27)

(nknx - 6) (pV - cm) = O (28)

)HP +21 -k 1 Vk- mkk

~~~~gk~
m

k ; m 6} --k k + 2 nkn ){ + g V Vm O (29)

where

L p

S pGS -
P

and from Eq. (11) it follows that the bicharacteristic curves, i.e.,

the wave fronts on which the characteristic equations hold, are
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x = GLn ,x =

respectively.

for orthogonal

Gsn and x = O for Eqs. (26), (27), (28): and (29)

A pictorial representation of these bicharacteristics

coordinate systems is presented inJ'Fig. 1.

Next, for demonstration purposes, a simple boundary problem is

solved as an indication of the applicability of the characteristic

equations.
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III. UNIFORM PLANE OBLIQUE LOAD SUDDENLY APPLIED ON AN INFINITE
FLAT PLATE

A detailed solution to a problem where impulsive loads exist, is

solved here. A bounded half-space is impacted by a step normal (V)

and tangential (W) velocities, as described in Figs. 2 and 3 and Eqo

(30). This combined step load is uniformly distributed over the

surface z = O.

1 when T > O

U,W = (
(30)

l O when T < O

where U,W, and T are dimensionless quantities in the following way:

G~t
- U - W GLtU --, w _ _,U =G. W= G Length

L L

also
O..

- x - z - xxa = x
Length' Length' xx: X + 2 (31)

- xz - zz -

zx X + 2p' zz X + 21 ' yy X + 2

This problem may simulate, for example; an impact landing of an infinite

flat plate on a rigid target at rest (Fig. 4a). For the convenience of

having zero initial conditions, an oblique velocity V (such that

V = W + U) is added to the whole system (Fig. 4b). This implies that

the motion is relative to the initial steady motion of the plate.

It follows that at T = O the rigid target is suddenly impacting

on the plate and at this instant (T = O) the plate and the target
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are at rest. Since the given actual velocity of the plate is constant,

the added constant velocity will not affect the emanating stress-

waves.

The following analysis is done by using the Lagrangian view

point: an observer is assigned to the origin of the coordinate system

at the impact face of plate (z = 0). The observer fixes his attention

on a specific particle in the plate at time equal to zero, when the

plate is still at rest and therefore unstrained. This implies that

the stresses will be measured from the initial unstrained condition.

The initial conditions are then

V = O
at T = 0 and 0 < z < 1

aij J

and the boundary conditions are

V = at z = 0
for T > O.

a = 0 at z = 1

Although this is a one-spatial dimensional problem, it may be con-

sidered as a step towards a strictly two-spatial dimensional problem

in the sense of having two kinds of waves and five unknown dependent

variables. It is seen that the five unknown dependent variables

are a , a , a U, and W which are functions of z only. Also,
X ZZ, XZ'

it can be readily seen that a shear wave and a longitudinal wave will be

generated here. In view of these observations the characteristic Eqs.

(26), (27), (28) and (29) will be immediately reduced to the following:
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- ~~dz
da - dW = O along dT =1

zz

dz
do + dW = 0 along = - 1

zz

- G -- G
GS dz GSdo- -- dU = O alongd = -

zx G dT G

GS dz G S
do + dU = O along = -

d zx G dT G
L

a = = a
xx yy 1 - v zz

V is Poisson's ratio which was chosen for this example to be v = 0.25.

Hence, the above equations become, after bars have been dropped,

do - dW = 0 along d = 1 (32)
zz d

daz ~W U Oalng d =1f
dz

do + dW = 0 along - = - 1 (33)
zz dT

do 1 dz 1
do -- dU = 0 along= (34)zx d 

1 dz 1
do + - dU = 0 along- =d (35)

1

a = a = 

xx y 3zz

o =o =0
xy zy

To evaluate numerically the dependent variables in the solution

domain, it is first necessary to compute these variables along the

leading wave front. Because of the abrupt load, discontinuities may

occur in the dependent variables along the leading wave front. There-

fore, the characteristic equation (32), which holds along the first

bicharacteristic curve z = T, has to be reformulated to accommodate
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the discontinuities in the variables themselves. Thus, in view of

Hadamard's (1949) definition of discontinuity, Eq. (32), and Fig.

5, the following relation exists for point P on the leading wave

front

d[a] - d[W] = O (36)

Equation (36) is now integrated as the bicharacteristic curve

(z - T = constant) approaches the leading front z - T = O, i.e.,

[a] - [W] = K (37)

where K is the constant of integration.

Since the material is at rest in front of the leading wave

(a ) = (W') =0oz(z front = p front
P

and Eq. (35) is rewritten as follows:

(a ) - (Wp) = K (38)
zz rear p rear

P

On the other hand, the characteristic Eq. (33) which holds along

the bicharacteristic curve z = - T + constant may be used as it

stands for point P. This can be done since there are no abrupt

changes across z = - T + constant. Thus, the following relation

exists:

do + dW = O along z = - T + constant
zz

or by the finite difference method

(a ) -(a ) + (W)-()0(zz rear (azz front p (W)rear (Wp)front 0
P P

(39)
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Again, since (a (W ) = 0, Eq. (22) is written
zz front p front

P
as follows:

(a ) = -(W ) (40)zz rear p(W rear (40)
p

It is worthwhile to point out that this last result is simply the

Rankine-Hugoniot relation.

In view of the Eqs. (38) and (40) it is concluded that

(azz )rear and (Wp)rear remain constant along the leading wave
zz rear prear

p
front. Now, since the applied load at the origin (z = 0, T > O)

is W = 1, it follows from Eq. (40) that a = - 1 at the origin.
ZZ

It then follows immediately that a and W are equal to - 1 and
ZZ

1 respectively along the leading wave front (a = - 1 and W = 1)
zz p
pp

until the wave front reaches the boundary z = 1 (Fig. 6). The above

analysis is then similarly repeated for the reflected wave. Equations

(34) and (35) are treated similarly. Figure 6 represents the stress

velocity distribution obtained in the xz-plane.
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Fig. 1. Representation of orthogonal bicharacteristic curves.
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